Machine Learning for Bioelectromagnetics: Prediction Model using Data of Weak Radiofrequency Radiation Effect on Plants
نویسنده
چکیده
Plant sensitivity and its bio-effects on non-thermal weak radio-frequency electromagnetic fields (RF-EMF) identifying key parameters that affect plant sensitivity that can change/unchange by using big data analytics and machine learning concepts are quite significant. Despite its benefits, there is no single study that adequately covers machine learning concept in Bioelectromagnetics domain yet. This study aims to demonstrate the usefulness of Machine Learning algorithms for predicting the possible damages of electromagnetic radiations from mobile phones and base station on plants and consequently, develops a prediction model of plant sensitivity to RF-EMF. We used rawdata of plant exposure from our previous review study (extracted data from 45 peer-reviewed scientific publications published between 1996-2016 with 169 experimental case studies carried out in the scientific literature) that predicts the potential effects of RF-EMF on plants. We also used values of six different attributes or parameters for this study: frequency, specific absorption rate (SAR), power flux density, electric field strength, exposure time and plant type (species). The results demonstrated that the adaptation of machine learning algorithms (classification and clustering) to predict 1) what conditions will RF-EMF exposure to a plant of a given species may not produce an effect; 2) what frequency and electric field strength values are safer; and 3) which plant species are affected by RF-EMF. Moreover, this paper also illustrates the development of optimal attribute selection protocol to identify key parameters that are highly significant when designing the in-vitro practical standardized experimental protocols. Our analysis also illustrates that Random Forest classification algorithm outperforms with highest classification accuracy by 95.26% (0.084 error) with only 4% of fluctuation among algorithm measured. The results clearly show that using K-Means clustering algorithm, demonstrated that the Pea, Mungbean and Duckweeds plants are more sensitive to RF-EMF (p ≤ 0.0001). The sample size of reported 169 experimental case studies, perhaps low significant in a statistical sense, nonetheless, this analysis still provides useful insight of exploiting Machine Learning in Bioelectromagnetics domain. As a direct outcome of this research, more efficient RF-EMF exposure prediction tools can be developed to improve the quality of epidemiological studies and the long-term experiments using whole organisms. Keywords—Machine learning; plants; prediction; mobile phones; base station; radiofrequency electromagnetic fields; RFEMF; plant sensitivity; classification; clustering
منابع مشابه
ارائه الگوریتمی مبتنی بر یادگیری جمعی به منظور یادگیری رتبهبندی در بازیابی اطلاعات
Learning to rank refers to machine learning techniques for training a model in a ranking task. Learning to rank has been shown to be useful in many applications of information retrieval, natural language processing, and data mining. Learning to rank can be described by two systems: a learning system and a ranking system. The learning system takes training data as input and constructs a ranking ...
متن کاملMachine Learning Algorithm for Prediction of Heavy Metal Contamination in the Groundwater in the Arak Urban Area
This paper attempts to predict heavy metals (Pb, Zn and Cu) in the groundwater from Arak city, using support vector regression model(SVR) by taking major elements (HCO3, SO4) in the groundwater from Arak city. 150 data samples and several models were trained and tested using collected data to determine the optimum model in which each model involved two inputs and three outputs. This SVR model f...
متن کاملProstate cancer radiomics: A study on IMRT response prediction based on MR image features and machine learning approaches
Introduction: To develop different radiomic models based on radiomic features and machine learning methods to predict early intensity modulated radiation therapy (IMRT) response. Materials and Methods: Thirty prostate patients were included. All patients underwent pre ad post-IMRT T2 weighted and apparent diffusing coefficient (ADC) magnetic resonance imagi...
متن کاملStock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملExposure to radiofrequency wave (RFW) generated by a base transceiver stations (BTS) antenna model affects learning and memory in female more than male rats
Background: Exposure to electromagnetic radiation may impair memory. This study was conducted to evaluate the effect of radiofrequency wave (hereafter referred to as RFW) on passive avoidance learning and memory in healthy males and females. Materials and Methods: Ten adult male and ten female Sprague-Dawley rats (230±20 gr) were randomly divided into four groups including two control groups (o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017